O comparație a modelelor de inteligență artificială folosite pentru detectarea știrilor false
DOI:
https://doi.org/10.53477/2065-8281-23-07Keywords:
știri false;, dezinformare;, managementul dezinformării;, procesarea limbajului natural, ; NLP;, inteligență artificială;, învățare automată;, securitate ciberneticăAbstract
Acest articol propune o comparație a modelelor actuale de ultimă generație de procesare a limbajului natural (NLP), optimizate pentru detectarea știrilor false, pe baza unui set de metrici. De asemenea, lucrarea dorește să evalueze eficacitatea acestora, ca parte a unei structuri de management al dezinformării. Necesitatea unei dezvoltări a acestui domeniu vine ca răspuns la răspândirea copleșitoare și nereglementată a știrilor false care reprezintă una dintre dificultățile majore în epoca actuală. Dezvoltarea tehnologiilor IA are un impact direct asupra creării și răspândirii dezinformării și a știrilor false, ca urmare a utilizărilor multiple pe care tehnologia le poate avea. În prezent, tehnicile de învățare automată sunt utilizate pentru dezvoltarea modelelor de limbaj mari (LLM). Aceste evoluții în știință sunt folosite și în campaniile de dezinformare. Legat de această problemă, conceptul de management al dezinformării a apărut ca o problemă de securitate cibernetică integrantă în peisajul actual al amenințărilor venite din planul virtual.
References
Alam, M.T., S. Ubaid, S.S. Sohail, M. Nadeem, S. Hussain și J. Siddiqui. 2021.
”Comparative Analysis of Machine Learning based filtering techniques using MovieLens.”Procedia Computer Science 194 2010-2017.
Albahar, Marwan. 2021. ”A hybrid model for fake news detection: Leveraging news content and user comments in fake news.” doi:https://doi.org/10.1049/ise2.12021.
Alotaibi, Fatimah L. și Muna M. Alhammad. 2022. ”Using a Rule-based Model to Detect Arabic Fake News Propagation during Covid-19.” International Journal of Advanced Computer Science and Applications. doi:10.14569/IJACSA.2022.0130114.
Bahadad, Pritika, Preeti Saxena și Raj Kamal. 2019. Procedia Computer Science 165 65: 74–82. doi:https://doi.org/10.1016/j.procs.2020.01.072.
Ben-David, A., L. Sterling și Y.H. Pao. 1989. ”Learning and classification of monotonic ordinal concepts.” Computational Intelligence 5 (1): 45-49. doi:https://doi.
org/10.1111/j.1467-8640.1989.tb00314.x.
Bergsma, S., M. Dredze, B. Van Durme, T. Wilson și D. Yarowsky. 2013. ”Broadly improving user classification via communication-based name and location clustering on twitter.” Proceedings of the 2013 conference of the North American chapter of the association for
computational linguistics: human language technologies.
Bhargava, N., G. Sharma, R. Bhargava și M. Mathuria. 2013. ”Decision tree analysis on j48 algorithm for data mining.” Proceedings of international journal of advanced research in computer science and software engineering.
Botalb, A., M. Moinuddin, U.M. Al-Saggaf și S.S. Ali. 2018. ”Contrasting convolutional neural network (CNN) with multi-layer perceptron (MLP) for big data analysis.” International conference on intelligent and advanced system (ICIAS).
Breiman, L. 1996. ”Bagging predictors.” Machine Learning 24 (2): 123-140.doi:10.1023/A:1018054314350.
Breiman, L., J.H. Friedman, R. A. Olshen și C. Stone. 2017. Classification and regression trees. New York: Routledge. doi:https://doi.org/10.1201/9781315139470.Nr.1/2023, IANUARIE-MARTIE
https://doi.org/10.53477/2065-8281-23-0797
UniversitÃTii NaTionale de ApÃrare „Carol I”BULETINUL,
Celebi, M. Emre și Kemal Aydin. 2018. ”Unsupervised Learning Algorithms.” doi:https://doi.org/10.1007/978-3-319-24211-8.
Chantar, H., M. Mafarja, H. Alsawalqah, A.A. Heidari, I. Aljarah și H. Faris. 2020.”Feature selection using binary grey wolf optimizer with elite-based crossover for Arabic text classification.” Neural Comput. Appl 32 12201–12220. doi:https://doi.org/10.1007/s00521-
-04368-6.
Chen, W., X. Xie, J. Wang, B. Pradhan, H. Hong, D.T. Bui și J. Ma. 2017. ”A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility.” Catena. http://dx.doi.org/ 10.1016/j.
catena.2016.11.032.
Chollet, François. 2017. Deep Learning with Python. New York: Manning.
Cohen, William W. 1995. ”Fast effective rule induction.” Machine learning proceedings, 12th anual conference. Morgan Kaufmann. 115-123.
Devasena, C.L., T. Sumathi, V.V. Gomathi și M.Hemalatha. 2011. ”Effectiveness evaluation of rule based classifiers for the classification of iris data set.” Bonfring International Journal of Man Machine Interface 1.
Devlin, J., M.W. Chang, K. Lee și K. Toutanova. 2019. ”BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.” doi:https://doi.org/10.48550/arXiv.1810.04805.
Gangireddy, Siva Charan Reddy, P. Deepak, Cheng Long și Tanmoy Chakraborty. 2020.
”Unsupervised Fake News Detection: A Graph-based Approach.” Proceedings of the 31st ACM Conference on Hypertext and Social Media (HT ‘20) 75-83. doi:https://doi.org/10.1145/3372923.3404783.
Gautam, Akansha, V. Venktesh și Sarah Masud. 2021. ”Fake news detection system using xlnet model with topic distributions: Constraint@ aaai2021 shared task.” Combating Online Hostile Posts in Regional Languages during Emergency Situation: First International Workshop,
CONSTRAINT 2021, Collocated with AAAI 2021, Virtual Event.
Gnanambal, S., M. Thangaraj, V.T. Meenatchi și V. Gayathri. 2018. ”Classification algorithms with attribute selection: an evaluation study using WEKA.” International Journal of Advanced Networking and Applications 3640-3644.
Gundapu, Sunil și Radhika Mamidi. 2021. ”Transformer based Automatic COVID-19 Fake News Detection System.” International Institute of Information Technology.
Guo, H., J. Cao, Y. Zhang, J. Guo și J. Li. 2018. ”Rumor Detection with Hierarchical Social Attention Network.” Proceedings of the 27th ACM international conference on information and knowledge management. doi:https://doi.org/10.1145/3269206.3271709.
Holte, Robert C. 1993. ”Very simple classification rules perform well on most commonly used data sets.” Machine learning 11. 63-90.
Jijo, B.T. și A.M. Abdulazeez. 2021. ”Classification based on decision tree algorithm for machine learning.” Journal of Applied Science and Technology Trends (JASTT) 20-28.
Kaliyar, Rohit Kumar, Anurag Goswami,și Pratik Narang. 2021a. ”DeepFakE: improving fake news detection using tensor decomposition-based deep neural network.” Journal of Supercomputing 77 (2): 1015-1037. doi:10.1007/s11227-020-03294-y.98 —. 2021b. ”EchoFakeD: improving fake news detection in social media.” Neural Computing and Applications 33: 8597–8613. doi:https://doi.org/10.1007/s00521-020-05611-1(0123456789().,-volV)(0123456789(). ,- volV).—. 2021c. ”FakeBERT: Fake news detection in social media with a BERT- based deep learning approach.” Multimedia Tools and Applications (80): 11765–11788. doi:10.1007/s11042-020- 10183-2.
Kaur, Prabhjot, Rajdavinder Singh Boparai și Dilbag Singh. 2019. ”Hybrid Text Classification Method for Fake News Detection.” International Journal of Engineering and Advanced Technology (IJEAT) 8 (5): 2388-2392.
Khosravi, Khabat, Zohreh Sheikh Khozani și Luca Mao. 2021. ”A comparison between advanced hybrid machine learning algorithms and empirical equations applied to abutment scour depth prediction.” Journal of Hydrology. doi:https://doi.org/10.1016/j.jhydrol.2021.126100.
Lakmali, K.B.N. și P.S. Haddela. 2017. ”Effectiveness of rule-based classifiers in Sinhala text categorization.” National Information Technology Conference (NITC). Colombo, Sri Lanka.doi:10.1109/NITC.2017.8285655.
Langley, Pat, Iba Wayne și Kevin Thompson. 1992. ”An analysis of Bayesian classifiers.”
Proceedings of the Tenth National Conference of Artificial Intelligence. California. 223-228.
Li, Dun, Haimei Guo, Zhenfei Wang și Zhiyun Zheng. 2021. ”Unsupervised Fake News Detection Based on Autoencoder.” Access. doi:https://doi.org/10.1109/ACCESS.2021.3058809.
Liu, Yinhan, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,Mike Lewis, Luke Zettlemoyer și Veselin Stoyanov. 2019. ”RoBERTa: A Robustly Optimized BERT Pretraining Approach.” ArXiv. doi:https://doi.org/10.48550/arXiv.1907.11692.
Loh, Wei-Yin. 2011. ”Classification and regression trees.” WIREs Data Mining Knowl Discov.doi:10.1002/widm.8.
Luan, Yuandong și Shaofu Lin. 2019. ”Research on Text Classification Based on CNN and LSTM.” International Conference on Artificial Intelligence and Computer Applications (ICAICA). doi:https://doi.org/10.1109/ICAICA.2019.8873454.
Lyu, Shikun și Dan Chia-Tien Lo. 2020. ”Fake News Detection by Decision Tree.”
SoutheastCon. doi:https://doi.org/10.1109/SoutheastCon44009.2020.9249688.
Moayedi, H., D. Tien Bui, B. Kalantar și L. Kok Foong. 2019. ”Machine-Learning-Based Classification Approaches toward Recognizing Slope Stability Failure.” Applied Sciences 9 (21).
doi:https://doi.org/10.3390/app9214638.
Nasir, J.A., O.S. Khan și I. Varlamis. 2021. ”Fake news detection: A hybrid CNN-RNN based deep learning approach.” International Journal of Information Management Data Insights. doi:10.1016/j.jjimei.2020.100007.
Ozbay, Feyza Altunbey și Bilal Alatas. 2020. ”Fake news detection within online social media using supervised artificial intelligence algorithms.” doi:https://doi.org/10.1016/j.physa.2019.123174.
Platt, John. 1998. Sequential minimal optimization: A fast algorithm for training support vector machines. Technical Report MSR-TR-98-14, Microsoft Research. PolitiFact. 2017.
https://www.politifact.com/.Nr.1/2023, IANUARIE-MARTIE
https://doi.org/10.53477/2065-8281-23-0799
UniversitÃTii NaTionale de ApÃrare „Carol I”BULETINUL, ,
Qian, F., C. Gong, K. Sharma și Y. Liu. 2018. ”Neural User Response Generator: Fake News
Detection with Collective User Intelligence.” Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence.
Ruchansky, Natali, Sungyong Seo și Yan Liu. 2017. ”CSI: A Hybrid Deep Model for Fake News Detection.” Proceedings of the 2017 ACM on Conference on Information and Knowledge Management (CIKM ‘17). doi:https://doi.org/10.1145/3132847.3132877.
Sammut, C., Webb, G.I. (eds). 2017. ”Decision Stump. Encyclopedia of Machine Learning.”
În Encyclopedia of Machine Learning, de C., Webb, G.I. (eds) Sammut, 262–263. Boston, MA.:Springer. doi:10.1007/978-0-387-30164-8_202.
Thaher, T., M. Saheb, H. Turabieh și H. Chantar. 2021. ”Intelligent Detection of False Information in Arabic Tweets Utilizing Hybrid Harris Hawks Based Feature Selection and Machine Learning Models.” Symmetry 13 556. doi:https://doi.org/10.3390/sym13040556.
Tuyen, T.T., A. Jaafari, H.P.H. Yen, T. Nguyen-Thoi, T. Van Phong, H.D. Nguyen și B.T.
Pham. 2021. ”Mapping forest fire susceptibility using spatially explicit ensemble models based on the locally weighted learning algorithm.” Ecological Informatics. doi:https://doi.org/10.1016/j.ecoinf.2021.101292.
University of Victoria. 2017. ”ISOT Fake News dataset.” https://www.uvic.ca/ecs/ece/isot/datasets/fake-news/index.php.
Varma, Sudhir și Richard Simon. 2006. ”Bias in error estimation when using cross-validation for model selection.” BMC bioinformatics 7.1.
Yang, Z., D. Yang, C. Dyer, X. He, A. Smola și E. Hovy. 2016. ”Hierarchical attention networks for document classification.” Proceedings of the 2016 conference of the North American chapter of the association for computational linguistics: human language technologies.
Young, T., D. Hazarika, S. Poria și E. Cambria. 2018. ”Recent trends in deep learning based natural language processing.” ieee Computational intelligenCe magazine 13 (3): 55-75.doi:10.1109/MCI.2018.2840738.
Yuliani, S.Y., M.F.B. Abdollah, S. Sahib și Y.S. Wijaya. 2019. ”A framework for hoax news detection and analyzer used rule-based methods.” International Journal of Advanced Computer Science and Applications.
Zhu, J. și T. Hastie. 2005. ”Kernel logistic regression and the import vector machine.” Journal of Computational and Graphical Statistics 14 (1): 185-205