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Deep learning on simulated gamma spectra 
for explosives detection using a NaI detector

The detection of explosives and contraband materials using neutron activation analysis (NAA) is a critical 
component of modern security systems. This study investigates the feasibility of identifying explosive 
materials using a simple sodium iodide (NaI) scintillation detector limited to a 3 MeV gamma energy 
range. The detector’s limitations pose a significant challenge as characteristic gamma photopeaks above 
this range, such as those near 10 MeV, are excluded. Utilising a 14 MeV neutron source, gamma spectra 
from simulated neutron interactions with explosive materials were analysed using Geant4. This work 
demonstrates that with advanced machine learning models, such as convolutional neural networks 
(CNNs) and tailored data preprocessing methods, effective discrimination between explosives and 
non-explosives is achievable despite these constraints.
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Detecting explosives before detonation is vital for security, counterterrorism, 
and humanitarian efforts. Explosives pose significant risks in airports, 

government buildings, military bases, and public spaces, where early detection can 
save lives and prevent destruction. As terrorist tactics evolve with greater reliance on 
improvised explosive devices (IEDs) and concealed explosives, pre-blast detection 
has become more critical than ever. The risk of attacks on airports, transit systems, 
and public events highlights the urgency of early intervention. Beyond terrorism, 
landmines remain a major threat in post-conflict areas. Hidden beneath the surface, 
landmines and unexploded ordnance (UXO) continue to injure civilians, obstruct 
economic recovery, and disrupt essential activities like farming and construction. 
Detecting and neutralizing these devices is essential for restoring land and protecting 
communities. Many affected regions still suffer from landmine contamination 
decades after conflicts.

Pre-blast detection also plays a role in preventing the trafficking of explosives, 
which supports terrorism and organized crime. Smugglers conceal explosives in 
cargo, vehicles, and containers, making border and port screening vital. Military 
forces also require preemptive detection of explosives in war zones, where IEDs and 
traps pose serious threats. Addressing these challenges requires advanced detection 
technologies capable of identifying explosives across various environments.

X-ray and computed tomography (CT) scanning are standard methods for detecting 
bulk explosives based on density and atomic composition. Conventional X-ray 
systems provide 2D images, helping security personnel identify suspicious objects 
in luggage, cargo, and vehicles. Dual-energy X-ray systems improve detection by 
differentiating organic explosives from metals. However, their limited penetration 
depth makes them ineffective for landmine detection.  CT scanning, which generates 
3D reconstructions, improves detection in cargo and complex environments but 
remains too large and costly for field use. While effective in airports and shipping 
ports, CT is impractical for remote minefields or mobile detection operations.

Nuclear techniques detect explosives by analyzing their elemental composition 
rather than relying on shape or density. Thermal neutron activation (TNA) involves 
bombarding a target with low-energy neutrons, which trigger gamma-ray emissions 
from nitrogen, a key element in many explosives. Similarly, fast neutron analysis 
(FNA) utilizes high-energy neutrons, enabling deeper penetration into cargo and 
soil, making it a valuable tool for landmine detection. However, these methods 
rely on expensive neutron sources and require highly specialized detectors, such as 
high-purity germanium (HPGe) systems, which provide high-resolution spectral 
data but come at a significant cost. The combination of costly neutron sources and 
advanced detection equipment makes these nuclear techniques impractical for large-
scale deployment in demining and security screening applications, particularly in 
resource-limited environments.
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Sodium iodide (NaI) detectors, on the other hand, operating at 3-MeV energy 
limits, provide a low-cost, portable alternative for explosives detection. Unlike 
high-purity germanium (HPGe) detectors, which require cooling and maintenance, 
NaI detectors are lightweight, mobile, and cost-effective—ideal for security 
operations and landmine clearance. Their compact design allows for handheld use, 
drone integration, or vehicle-mounted deployment. However, NaI detectors have 
limitations in detecting high-energy gamma-ray photopeaks that are crucial for 
identifying explosives using neutron activation analysis (NAA). Key markers in the 
gamma spectra of explosives include:

 Nitrogen (N): 10.83 MeV
 Oxygen (O): 6.13 MeV
 Carbon (C): 4.44 MeV

Since these high-energy peaks exceed the 3-MeV limit of NaI detectors, alternative 
strategies are necessary to achieve reliable explosives detection. In this work, we 
present a deep learning-based method utilizing convolutional neural networks 
(CNNs) to effectively identify explosive materials. CNNs compensate for the 
hardware limitations of NaI detectors by analysing the lower-energy gamma 
spectrum, detecting patterns and correlations that are indicative of explosives. By 
training on simulated gamma spectra, our CNN-based approach extracts valuable 
features from limited spectral data, enabling NaI detectors to differentiate explosive 
materials despite their restricted energy range.

Related Work

Previous studies in explosive detection have extensively utilized neutron activation 
analysis combined with gamma spectroscopy to identify materials based on their 
elemental composition (Whetstone and Kearfott 2014). The importance of high-
energy gamma photopeaks, particularly those above 3 MeV, has been highlighted 
in works such as (Nunes et al. 2002) where these peaks were instrumental in 
differentiating explosive materials from benign substances. Similarly, the IAEA’s 
guidelines on neutron activation analysis emphasize the value of these markers for 
accurate material identification (IAEA 2012).

Recent advancements in machine learning have further enhanced the capability 
of gamma spectroscopy (Zehtabvar et al. 2024). CNNs, in particular, have shown 
promise in processing complex spectral data for classification tasks. For example, 
studies have demonstrated their effectiveness in analysing low-resolution or noisy 
spectra, making them suitable for applications where detector limitations exist. 
Moreover, Geant4-based (Agostinelli et al. 2003) simulations have been widely 
adopted to model neutron interactions and generate synthetic datasets, providing a 
controlled environment to develop and validate analytical techniques.
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While prior research focused predominantly on detectors with broader energy 
ranges, limited work has explored the feasibility of explosive detection using low-
energy detectors like NaI scintillators. This study builds on the existing body of 
knowledge by specifically addressing the constraints of a 3 MeV-limited detector and 
investigating the potential of CNNs to overcome these challenges. By leveraging both 
simulated data and advanced computational methods, this work aims to contribute 
to the development of cost-effective and efficient explosive detection systems.

Materials and Methods

1.1. Simulated Experimental Setup
The experimental setup was designed to simulate the neutron activation and gamma 
emission processes for a variety of materials, both explosive and non-explosive. A 14 
MeV deuterium-tritium (D-T) neutron generator (Lou 2003) was positioned 30 cm 
away from the target material, which was modelled as a spherical sample with a radius 
of 2 cm. The target sphere contained either an explosive or a non-explosive material.

A 3-inch sodium iodide (NaI) scintillation detector was placed 30 cm from the 
target sphere, positioned at an angle of 30 degrees relative to the axis connecting 
the neutron source and the target, in order to minimize the direct neutron flux 
interference (Figure 1). The NaI detector was configured to record gamma emissions 
within its effective energy range of 0-3 MeV.
To simulate neutron interactions with the target materials, Geant4 was utilized 
to generate 10⁹ neutron events directed toward the target sample. These high-
energy neutrons activated the material, causing prompt gamma emissions that 
were subsequently recorded by the NaI detector. To mimic the detector’s energy 
resolution, the recorded gamma energies were smeared using a Gaussian function 
with a full-width at half-maximum (FWHM) defined as

Figure 1   Schematic depiction of the experimental setup: a 14 MeV neutron generator positioned 
30 cm from a 2 cm radius target sphere. A 3-inch NaI detector, placed 30 cm from the sphere 

at a 30° angle, records prompt gamma emissions from activated materials.
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where A = 52.96 keV and Ec = 662 keV. This smearing process ensured that the 
simulated spectra accounted for the realistic energy resolution of the NaI detector.

From the smeared interaction data, 2000 gamma spectra were generated per 
material. Each spectrum was created through random sampling of the simulated 
events, ensuring statistical diversity and robustness. The gamma spectra comprised 
2048 bins, spanning the full energy range detectable by the NaI detector (0-3 MeV) 
and containing a total of 10000 counts. The gamma spectra from six such materials 
can be seen in Figure 2.

This setup was specifically designed to emulate realistic detection conditions 
while providing high-fidelity data for subsequent machine learning analysis. The 
combination of geometric arrangement, simulation accuracy, and spectrum diversity 
ensures reliable inputs for CNN training and validation.

The materials investigated include a mix of explosives and non-explosives. Their 
chemical formulas and densities are listed in Table 1.

Figure 2   Gamma-ray energy spectra of various materials, plotted on a logarithmic scale. 
The first row displays spectra for explosive materials: (a) Nitroglycerine, (b) Ammonium Nitrate, 

and (c) PETN, while the second row contains non-explosive materials: 
(d) Acrylic, (e) Nylon, and (f) Polyethylene. 
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1.2. CNN Architecture 
Convolutional neural networks (CNNs) are powerful machine learning models 
designed for extracting patterns and features from data, particularly in images 
and sequential data like gamma spectra. CNNs use convolutional layers to identify 
localized features, pooling layers to reduce data dimensionality, and fully connected 
layers for classification. This architecture is well-suited for processing the high-
dimensional data obtained from gamma spectroscopy (figure 3). 

TABLE NO. 1

Target Material Properties

Figure 3   CNN architecture for gamma spectra classification: three convolutional layers  
(32, 64, 128 filters) with ReLU activation, followed by max pooling layers (window size = 2). 

Dropout layers reduce overfitting, and a softmax output layer enables classification.
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In this study, the CNN was configured with the following architecture, using Keras 
(Gulli and Pal 2017):

Convolutional Layers (1D): The convolutional layers are responsible for extracting 
features from the input gamma spectra by applying a series of filters that slide over 
the data. Each filter learns specific patterns or features, such as peaks or edges, that 
are important for classification. The configuration of the convolutional layers is as 
follows:

 The first convolutional layer uses 32 filters, a kernel size of 3, a stride of 1, 
and no padding. This layer captures low-level features from the input spectra.
 The second convolutional layer increases the number of filters to 64, with 
the same kernel size, stride, and no padding. It learns more complex features 
by building on the patterns identified by the first layer.
 The third convolutional layer uses 128 filters, maintaining the kernel size of 
3, stride of 1, and no padding. This layer extracts high-level features, capturing 
intricate details of the input data.

All convolutional layers use the ReLU (Rectified Linear Unit) activation function, 
which outputs the input directly if positive or zero otherwise. This activation 
introduces non-linearity to the model, enabling it to learn complex relationships in 
the data while also avoiding the vanishing gradient problem during training.

Pooling Layers: After each convolutional layer, a max pooling layer is applied. 
Pooling layers reduce the dimensionality of the feature maps by selecting the 
maximum value within a specified window, which helps retain the most important 
features while reducing computational complexity. Each pooling layer uses a window 
size of 2, a stride of 1, and no padding. This configuration ensures that relevant 
features are preserved while progressively reducing the size of the feature maps.

Dropout Layers: Dropout layers are incorporated to prevent overfitting by randomly 
setting a fraction of the layer’s nodes to zero during training. This forces the model 
to rely on a broader set of features, improving generalization. In this architecture:

 A dropout layer with a rate of 0.1 follows each pooling layer.
 An additional dropout layer, also with a rate of 0.1, is applied after the dense 
layer.

Dense Layers: The dense layer serves as a fully connected layer that maps the 
extracted features into a higher-dimensional representation for classification. In this 
architecture, the dense layer consists of 128 nodes with ReLU activation, enabling 
the model to capture and represent the complex relationships between the extracted 
features.

Output Layer: The final layer is the output layer, which assigns probabilities to each 
material class. This layer uses the Softmax activation function, which converts 
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the raw output values into probabilities that sum to 1. This makes it well-suited for 
multi-class classification tasks, as it enables the model to determine the most likely 
class for each input spectrum.

1.3. Training and Validation of the Model
The CNN was trained and validated using the gamma spectra data generated for 
each material. From the 2000 spectra per material, 60% were used for training, 20% 
for validation, and 20% for verification. To optimize the model, L1L2 regularization 
was applied to prevent overfitting, and a batch size of 100 was used during training.

The loss function employed was categorical cross-entropy, which measures the 
difference between the predicted probability distribution and the true distribution. 
This function is particularly suitable for multi-class classification tasks, as it penalizes 
incorrect predictions proportionally to their confidence levels.

Training performance was monitored by recording the accuracy and loss values for 
each batch. The training process achieved an overall accuracy of 0.882 and a final 
loss of 0.035. Figures 4 and 5 illustrate the training accuracy and loss progression 
over the batches, respectively, highlighting the model’s convergence and reliability.

Figure 4   Training and validation accuracy of the CNN model per batch, demonstrating 
convergence and stability throughout training, with a final accuracy of 0.882 achieved.

Figure 5   Loss progression during CNN training and validation, showing a steady decrease in 
categorical cross-entropy loss per batch, with a final loss value of 0.035 achieved.
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Results

The CNN model’s performance was evaluated using 20% of the original dataset, 
which was reserved as verification data. The evaluation involved constructing a 
confusion matrix based on the model’s predictions. The confusion matrix (Figure 
6), with rows representing the real materials and columns the predicted materials, 
provides a detailed breakdown of the model’s classification performance.
The overall accuracy achieved by the CNN model was 89.615%, reflecting its 
capability to distinguish between the various materials under study. The model’s 
ability to generalize effectively, despite the limitations of the 3 MeV NaI detector and 
the constrained energy range, demonstrates the robustness of the proposed approach.

To evaluate the model’s capability in distinguishing between explosive and non-
explosive materials, the metrics were grouped accordingly (Table 2).

By aggregating all classification results for explosive and non-explosive materials, 
the system’s performance can be evaluated using sensitivity, a metric derived from 
the confusion matrix that measures the ability to correctly identify positive cases.

 Sensitivity for detecting explosives: 0.98, meaning the system accurately 
identifies 98% of actual explosives, with only 2% of explosives misclassified as 
non-explosive materials.
 Sensitivity for detecting non-explosives: 0.99, indicating that 99% of 
benign materials are correctly classified, with only 1% incorrectly flagged as 
explosives.

Figure 6   Confusion matrix showing the CNN model’s performance in classifying materials. 
Rows represent the actual material classes, and columns represent the predicted classes.

TABLE NO. 2

Summarized Confusion Matrix
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These results highlight the model’s effectiveness in detecting explosives while 
maintaining a high level of sensitivity for non-explosive materials. The slight 
imbalance in performance metrics between the two categories may be attributed to 
variations in the gamma spectra patterns and overlapping spectral features among 
certain materials.
The confusion matrix revealed that misclassifications predominantly occurred among 
materials with similar elemental compositions. These overlaps can be attributed to the 
inherent limitations of the detector’s energy range and resolution, which constrain the 
availability of distinct spectral features. Despite these challenges, the CNN successfully 
leveraged subtle spectral patterns to achieve high classification accuracy.

Discussion

This study highlights the potential for low-energy NaI detectors to be employed 
in explosive detection through advanced computational methods. By leveraging a 
3-inch NaI detector and advanced CNN algorithms, the approach demonstrated 
robust performance despite the detector’s energy limitations. The high overall 
sensitivity of 0.98 for explosives underscores the reliability of this method in 
accurately identifying explosive materials. The use of Geant4 simulations enabled 
detailed modelling of neutron interactions and gamma spectra, providing a solid 
foundation for training and validating the CNN.

One significant finding is the ability of the CNN to compensate for the lack of high-
energy gamma photopeaks by recognizing subtle patterns in the lower-energy 
spectrum. This demonstrates the potential for machine learning to overcome hardware 
limitations, offering a cost-effective solution for explosive detection. However, the 
reliance on simulated data necessitates future work involving real-world experiments 
to validate these findings. Additionally, while the model’s performance in detecting 
non-explosives was strong, slight variations in precision suggest the need for further 
optimization of the network’s architecture and training process.

Future research should focus on expanding the range of tested materials, 
incorporating real-world noise conditions, and refining machine learning techniques 
to enhance robustness and generalizability. Furthermore, exploring the integration 
of this method with complementary detection technologies could provide a 
comprehensive solution for security applications.

Conclusion

Detecting explosives with a NaI detector limited to 3 MeV is not only feasible but 
also highly reliable when combined with machine learning techniques. Despite the 
detector’s inherent limitations in capturing high-energy gamma-ray emissions, the 
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integration of deep learning algorithms, particularly convolutional neural networks 
(CNNs), enables the accurate classification of explosive materials by analysing the 
lower-energy gamma spectrum. The achieved overall sensitivity of 0.98 for explosives 
detection underscores the effectiveness of this approach, making it a promising 
solution for security screening, border control, and landmine detection.

This method offers a cost-effective alternative to traditional high-energy detectors 
like high-purity germanium (HPGe) systems, which, while highly precise, are 
expensive, require cryogenic cooling, and are impractical for large-scale deployment 
in field applications. By leveraging advanced computational models, this approach 
compensates for the hardware constraints of NaI detectors, proving that machine 
learning can bridge the gap between cost and performance.

Moving forward, future research should focus on validating these findings with 
experimental data, optimizing model robustness under real-world conditions, and 
expanding the system’s applicability to diverse environments, including dynamic 
security checkpoints, cargo screening facilities, and field-based demining operations. 
Enhancing the model’s adaptability to various background radiation levels and 
material compositions will further increase its reliability and expand its practical 
deployment potential.
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