

272

INVESTIGATING PRIVACY LEAKS IN IOS APPLICATIONS

Adriana-Meda UDROIU, PhD
National Institute for Research and Development in Informatics

meda.udroiu@rotld.ro

Abstract: The concern for protecting personal data has been raised many years ago and has been kept on sight ever
since. People have to trust their devices and the applications they use so smartphone company survive on the market.
Apple treats the security side very seriously and tries to reduce any malicious behaviour as early as possible. This is the
main reason they introduced the vetting process to filter out the applications that seem suspicious and only publish legit
applications on the App Store. Although the theory looks just fine, there have been multiple applications removed from
the App Store because of malicious behaviours that couldn’t be found during the vetting process. In this paper we focus
on finding personal data leaks through already published applications in the App Store.

Keywords: data protection; privacy; Apple iOS.

Introduction
One of the most important parts of security is related to data privacy. Data privacy, also

called information privacy, is the aspect of information technology (IT) that deals with the
ability an organization or individual has to determine what data in a computer system can be
shared with third parties1. Most of the countries of the world have a strict regulation regarding
data privacy about how, when and why information should be shared between parties. For
example, in the United States, the Children’s Online Privacy Protection Act (COPPA)2 gives
parents control over what information websites or mobile applications can collect from their
children. Similar to this, is the General Data Protection Regulation (GDPR)3 meant to
harmonize data privacy laws across Europe.

Any application installed on an iOS device communicates with external servers and
exchanges information with them for different reasons. The user is always asked if he allows
the application to share certain private information with the server (e.g. for statistical purposes),
but only for that information.

Private Data Classification
Before finding a right approach to follow our case, we had to describe what information

about someone is considered sensible. We define what data is private according to multiple data
privacy regulations from around the world. Outlining which data is considered private and
which is not helps us filter the data being sent from the mobile phone to external entities.

Part of our study, we chose 10 worldwide regulations from 4 different continents and
created a list of identifiers that represent private information. These can be split into multiple
type depending on their nature. For example any online identifier such as location information,
a device serial number, email, IP address, biometric or username are marked as personal
information by multiple regulations such as GDPR4, COPPA5, DPA6, RDPL7, LGPD8, PDPA9

1 https://searchcio.techtarget.com/definition/data-privacy-information-privacy
2 https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/childrens-onlineprivacy-protection-rule
3 https://gdpr-info.eu
4 https://gdpr-info.eu
5https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/childrens-onlineprivacy-

protection-rule
6 http://www.legislation.gov.uk/ukpga/2018/12/contents/enacted
7 https://www.buzescu.com/romanian-data-protection-laws/
8 https://www.cookiebot.com/en/lgpd/
9 https://www.dataprotectionreport.com/2020/02/thailand-personal-data-protection-law/

10.53477/2668-2028-21-35

273

or LRK10. Other pointed out identifiers are ones name and surname, date and place of birth,
physical address, gender or eye color. These are generally used to legally identify a person and
are considered personal information by regulations like GDPR and COPPA. Last but not least,
health and culture factors, beliefs, education or possessions are also mentioned by some
regulations in the personal identification information section.

Lumen11, the Android app that analyzes mobile traffic and helps identify privacy leakes

inflicted by Android apps and the organizations collecting this information11 defines a list of

Personal Identification Information they had in mind when designing the application. Part of their

list are the email, phone number, geolocation, router MAC address and the router SSID.

Table 1. Most Common PII According to Regulations&Lumen

PII Regulations

biometric data GDPR, DPA, RDPL, LGPD, PDPA, LRK

health information GDPR, DPA, RDPL, LGPD, PDPA

beliefs (of any type) DPA, RDPL, LGPD, PDPA

any online identifier GDPR, COPPA, RFLP

location GDPR, COPPA, Lumen

device identification numbers COPPA, Lumen

email COPPA, Lumen

Breaking Regulations

Online data manipulation is very often encountered. Personal information can be easily

collected and used afterwards for multiple purposes such as contributing to all kinds of statistics

or creating custom recommendation lists12.

This behaviour is limited by all the data privacy regulations around the world.

According to most of them, it is forbidden to record, store or use pieces of private information

without ones consent.

Although regulations are rather strict, some actions are not prohibited. For example, if

one grants location access to an application, this has the right to send the location back to the

server, use it to optimize features for the user based on its location, but it would not be OK if

the location is sent to other external entities without specifically having the users consent.

The model of application

Mobile phone applications installed on Apple devices are usually third party

applications that come from external developers. Because of this, all applications have to pass

the Apple vetting process before being publicly released. We do not know much about what the

vetting process does in order to check whether the application meets their standards or not, so

we do not know how data privacy is tackled by Apple.

We want to come up with a solution that can guarantee that an application installed on

an iOS device does not leak any personal information. We want to provide an answer to the

research question How strong is the Apple iOS security model in preventing privacy leaks by

potentially malicious 3rd party apps? By creating an automatic dynamic analyzer that will be

10 http://www.ilo.org/dyn/natlex/natlex4.detail?plang=enpisn=96710pcountry=KAZpcount=7https://haystack. mobi
11 I. Reyes, P. Wiesekera, A. Razaghpanah, J. Reardon, N. Vallina-Rodriguez, and S. Egelman, Won’t somebody

think of the children? examining coppa compliance at scale, 2018; I. Reyes, P. Wiesekera, A. Razaghpanah, J.

Reardon, N. Vallina-Rodriguez, S. Egelman, and C. Kreibich, Is our children’s apps learning?” automatically

detecting coppa violations, 2017.
12 https://www.wired.com/story/wired-guide-personal-data-collection/:text=It%20matters%20not%20just% 20what,or

274

able to detect privacy data leaks made by any iOS application and provide an answer to the

question above. It is important to know if the Apple vetting process is as strong as it promises

to be so that any security issue found can be solved as soon as possible.

Workflow

We propose a simple workflow described in Figure 1.

Figure 1. Basic Workflow

There are 2 main components part of the whole story that cannot be absent: a jailbroken

iOS mobile device connected to the Internet and an application installed on it that might require

Internet access. In most cases, the client application usually communicates to its server via the

Internet. This traffic going back and forth is what interests us most. If an application leaks data,

this means the data is sent to an external entity. We discuss in Section 3 more about who that

external entity can be and why this is rather important.

After starting the application, we need to generate traffic as if a regular user would. We

also have to have another component that can intercept and log the outgoing traffic. All the

previous components described up to now work along.

Another separate component is responsible to analyze the traffic that we gather. As an output

from this component we get a set of applications that did exfiltrate some information to external

servers. Because each application might be allowed to do different actions (e.g. one might be able

to access the users real time location, but another is not allowed to do that), we define these in a

separate zone. By combining the separate zone with the information gather after analyzing the traffic

we will be able to say if an application leaks private data it shouldn’t or not.

Design

The workflow described in section 2 implies the fact that we gather a set of logs which

have to be analyzed. We consider that defining a formal model of our problem eases out this

process.

In order to define this model, we need to describe the 3 main components we have: user

data, the application, the remote server. We split data into 2 separate categories: the user data

that is defined within the system and the data that gets exfiltrated. Even though the last

mentioned is included in the first one, we treat them as separate entities in our definition.

Before defining the premises, we define some the basic functionalities in table 2.

275

Table 2. Basic functions for the formal definition

Name Parameters Functionality

A string: x returns true if x is an application

D string: x returns true if x is an personal data

R string: x returns true if x is a remote server

sensitive D: x returns true if x is sensitive data

owns A: x, R: y returns true if y is a remote server associated with x

has access A: x, D: y returns true if application x has access to data y

sent D: x, R: y returns true if data x was sent to remote y

connects D: x, R: y returns true if application x connects to remote server y

According to worldwide regulations the data defined within a system can be sensitive or

not and we define a premise on that as below.

∃yD(x) ∧ sensitive(y)

We describe a similar premise regarding remote servers. A remote sever can be authorized

or not. A server is not authorized if is not owned by the developer of the application

communicating with it.

Figure 2. Information Mapping

∃xA(x) ∧∃yR(y) ∧ owns(x,y) ⇒ authorized(y)

In order to define a formal model, we first have to define what types of supporting

evidence we have. These are actually mappings of information between 2 of the 4 components

described in Figure 2.

The first mapping refers to the link between an application and the data it has access to.

We define a set of supporting evidence as a mapping between an application and a piece of

information it has access to. For example, if there is an application x and a piece of data y we

can say that application x has or doesn’t have access to data y, we define the following premise:

∃xA(x) ∧∃yD(y) ∧ has access(x,y)

The second mapping refers to the relation between the exfiltrated data and the remote

server. We define data as exfiltrated if we the application sends it to any type of server.

∃yD(Y) ∧∀zR(z) ∧ sent(y,z) ⇒ exfiltrated(y)

The last mapping points out the connection between the application and the remote server.

We define the following premise for this connection.

∃xA(x) ∧∃yR(y) ∧ connects(x,y)

Based on the premises defined above we define the following inferences.

If at least one of the inferences states true then we have a mathematical proof that there

is at least one application installed on the device that leaks private data.

276

Implementation

To follow up the proposed design, we need a method gather logs and other information to

properly define the premises. Besides this, we need a way to generate traffic in the first place.

We describe both parts below.

Figure 3. How mitmproxy works

Creating the Premises

In order to define the premises linked to the first mapping in Figure 2 we have to find out

what data can an application access. This step is custom for each application used. An iOS user

has the opportunity to grant or deny access to certain data and this is separately defined for each

application installed on the device.

When gathering data about the connection between the exfiltrated data and the remote

server, we use mitmproxy[1]. Mitmproxy is an HTTPS that can be used to intercept, inspect,

modify and replay web traffic such as HTTP/1, HTTP/2, WebSockets, or any other SSL/TLS-

protected protocols. Mitmproxy has multiple modes of operation, but at a basic level it just acts

as an intermediate between the device and the Internet that is able to intercept and read requests

coming from both sides as shown in figure 3.

Unfortunately, at this point we are unable to tell which application generated a given

request. Without knowing the application, we cannot satisfy the model described before. In

order to solve this problem, we describe the third mapping between the application and the

remote server. The request captured by mitmproxy comes with a timestamp which we keep in

mind. The lsof tool13 can provide information regarding the active connections a mobile device

has. The advantage here is that connections are mapped to a specific process which mean we

know the application that has that active connection. Lsof can also capture the exact moment

when the connection is established or closed. In this case, if we have a request made at a certain

point in time that has a certain destination, we can map it to one one of the (established, stopped)

intervals associated with the same end point. We parse the lsof output to retrieve the application

name and the open connections it has. We also track only connection through sockets at the

moment. We ignore systems daemons.

13 https://linux.die.net/man/8/lsof

277

Automating Traffic Generation

The Android Monkey is a program that runs on your emulator or device and generates

pseudo-random streams of user events such as clicks, touches, or gestures, as well as a number

of system-level events. You can use the Monkey to stress-test applications that you are

developing, in a random yet repeatable manner.14

Similar to the Android version, Costin Carabas, a PhD student from University Politehnica

of Bucharest, found and setup a similar application, Macaca, that is doing the same job but for

iOS devices.15 We use this to generate all our user events instead of actually manually interacting

with the device since our final goal is to have all these steps automated.

Preliminary Results and Current Status

We created an online profile as one would normally do. We added as much data to that

account as possible and we linked it to as many applications as possible. We consider that it is

more likely to exfiltrate any type of data when the user is logged in with an account. A person

linked to an account is much more valuable than a person using an application occasionally.

Using mitmproxy[1] we captured a starting set of logs from which we extracted some

information regarding the remote hostname and IP, the HTTP method of the request, the response

code and length, but as mentioned in previous sections, these requests cannot guarantee the

application that generated the request. Initial information we collected are listed in table 3.

Table 3. Preliminary Results

Application Host IP address Method

TikTok graph.facebook.com 31.13.84.8 GET

TikTok dm16.musical.ly 92.123.103.9 GET

TikTok play.googleapis.com 216.58.207.74 POST

TikTok api2-16-h2-useast2a.musical.ly 92.123.102.200 POST

Find the Differences wd.adcolony.com 34.224.46.26 POST

Find the Differences firebaselogging-pa.googleapis.com 216.58.206.10 POST

Find the Differences rv-gateway.supersonicads.com 54.230.159.20 GET

Find the Differences api.gameanalytics.com 3.218.26.150 POST

To bring up to a full number, we started gathering information using lsof. We currently setup a

script that runs every 2 seconds on our device and prints out a mapping between the applications

running at that point and their active connections. We use launchd16 to setup this script to run

continuously and most important to keep it alive. We use the plist in the listing below.

14 https://developer.android.com/studio/test/monkey
15 https://macacajs.github.io/guide/cross-platform
16 https://www.launchd.info

$ lsof -n -i -p ^1 -c ^wifid -c ^identitys -c ^lockdownd -c ^mDNSRespo -c ^sshd | tail -n +2

| tr - " " | tr \> " " | tr -s " " | cut -d" " -f1,10 | cut -d":" -f1

(..)

TikTok 2.16.187.65

TikTok 2.16.187.65

(..)

278

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/

PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>Label</key>

<string>com.run.lsof</string>

<key>ProgramArguments</key>

<array>

<string>/bin/bash</string>

<string>/var/root/run_lsof.sh</string>

</array>

<key>StandardOutPath</key>

<string>/var/root/file_out.log</string>

<key>StandardErrPath</key>

<string>/var/root/file_err.log</string>

<key>RunAtLoad</key>

<true/>

<key>KeepAlive</key>

<true/>

<key>StartInterval</key>

<integer>2</integer>

<key>KeepAlive</key>

<true/>

</dict>

</plist>

Conclusion

At this moment we have already started working on the implementation of our model as

mentioned in the previous section. We started working on gathering data regarding the

communication between an application and a remote server, but we need to add more to it.

One thing would be to find an appropriate database or storage model to save all the

connections an application makes. Afterwards we will define the best and most efficient way to

store this much data. Besides storage, we need to find a fast and formal querying language in

which we can define all of the premises we find throughout our research.

BIBLIOGRAPHY

1. Mitmproxy

2. REYES I., WIESEKERA P., RAZAGHPANAH A., REARDON J., VALLINA-

RODRIGUEZ N., and EGELMAN S., Won’t somebody think of the children? examining

coppa compliance at scale, 2018.

3. REYES I., WIESEKERA P., RAZAGHPANAH A., REARDON J., VALLINA-

RODRIGUEZ N., EGELMAN S., and KREIBICH C., Is our children’s apps learning?”

automatically detecting coppa violations, 2017.

